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Aims of this lecture

• A review on the concept of stiffness matrix
• Derivation of stiffness matrix for spring element by

• Direct equilibrium method
• Minimum potential energy method
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Review to Concept of Stiffness Matrix

Step7: Solve for Element Strains & Stresses

Step6: Solve for Unknown Degree-of-Freedom

Step5: Assemble Element Equations & Impose Boundary Conditions

Step4: Derive the Element Stiffness Matrix & Equations 

  Step3: Define Stain/Displacement & Stress/Strain Relationships

Step2: Select a Displacement Function

Step1: Definition of Element Type & Discretization 
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Local stiffness matrix: 𝑓መ = 𝑘෠ 𝑑መ
Local nodal force

Local nodal displacement

Local coordinate system of element: (𝑥ො,𝑦ො,𝑧̂)

𝑥

𝑦

𝑧

Global coordinate system of element: (𝑥,𝑦,𝑧)

Global stiffness matrix: 𝐹 = 𝐾 𝑑

Global nodal force

Global nodal displacement

Stiffness Matrix for a Spring Element

• The simplest element:
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𝐿

𝟏 𝟐
𝑘

Properties of spring:
• An initial length (L)
• Obeys Hooke’s law (Stiffness constant of 𝑘)
• Resists force only along its axis

There are two reference points at both ends of 
spring element called nodes.

Since the forces exert along the axis, we need to 
span a local axis along spring element.

Local nodal displacement

Local nodal force

𝑓መ = 𝑘෠ 𝑑መ

𝑓መଵ௫

𝑓መଶ௫

= 𝑘෠
𝑑መଵ௫

𝑑መଶ௫

𝑓መଵ௫

𝑓መଶ௫

=
𝑘ଵଵ 𝑘ଵଶ

𝑘ଶଵ 𝑘ଶଶ

𝑑መଵ௫

𝑑መଶ௫

Local stiffness matrix for spring element
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Derivation of Stiffness Matrix

• Step 1: Select the Element Type
• There are 2 nodes for the element

• Nodes should be labeled

• The material property of the element is 𝑘

• The length of element is 𝐿
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𝐿

𝟐
𝑘

𝑇𝑇 𝟏

Local nodal displacement
(Local Degree-of-Freedom)

Derivation of Stiffness Matrix

• Step 2: Select a Displacement Function
• The mathematical function to represent the deformed shape of the spring element under loading. 

• The most common function used are polynomial.

• Local DOFs are along 𝑥ො
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𝐿

𝑘

The displacement function is chosen to be 𝑢ො(𝑥ො)The displacement function is chosen to be 𝑢ො(𝑥ො)

𝑢ො 0 = 𝑑መଵ௫𝑢ො 0 = 𝑑መଵ௫ 𝑢ො 𝐿 = 𝑑መଶ௫𝑢ො 𝐿 = 𝑑መଶ௫

𝑢ො 𝑥ො = 𝑎ଵ + 𝑎ଶ𝑥ො𝑢ො 𝑥ො = 𝑎ଵ + 𝑎ଶ𝑥ො

A unique linear function can be used to describe displacement 
in element under loading according to nodal displacements.

𝟏 𝟐

𝟏 𝟐

The total number of coefficients 𝑎 is equal to the total 
number of degrees of freedom associated with the element. 
The total number of coefficients 𝑎 is equal to the total 
number of degrees of freedom associated with the element. 



٢۵/٠٣/١۴۴٢

۴

Derivation of Stiffness Matrix
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𝑢ො 𝑥ො = 𝑎ଵ + 𝑎ଶ𝑥ො 𝑢ො 𝑥ො = 1 𝑥ො
𝑎ଵ

𝑎ଶ
𝑢ො 𝑥ො = 1 𝑥ො

𝑎ଵ

𝑎ଶ

Boundary Conditions: 𝑢ො 0 = 𝑑መଵ௫

𝑢ො 𝐿 = 𝑑መଶ௫

𝑢ො 0 = 1 0
𝑎ଵ

𝑎ଶ
= 𝑎ଵ = 𝑑መଵ௫

𝑢ො 𝐿 = 1 𝐿
𝑎ଵ

𝑎ଶ
= 𝑎ଵ + 𝑎ଶ𝐿 = 𝑑መଶ௫

𝑎ଶ =
𝑑መଶ௫ − 𝑑መଵ௫

𝐿

𝑎ଵ = 𝑑መଵ௫

𝑢ො 𝑥ො = 𝑑መଵ௫ +
𝑑መଶ௫ − 𝑑መଵ௫

𝐿
𝑥ො = 1 −

𝑥ො

𝐿
𝑑መଵ௫ +

𝑥ො 

𝐿
𝑑መଶ௫

𝑁ଵ(𝑥ො) 𝑁ଶ(𝑥ො)
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0 0.2 0.4 0.6 0.8 1

N_1(x) N_2(x)

𝑢ො 𝑥ො = 𝑁ଵ 𝑁ଶ
𝑑መଵ௫

𝑑መଶ௫

Shape Functions
(Interpolation Functions)

Properties of Shape Functions
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N_1(x) N_2(x)

𝑁ଵ 0 = 1
𝑁ଵ 𝐿 = 0

𝑁ଶ 0 = 0
𝑁ଶ 𝐿 = 1

Shape function corresponding to node i, is equal 
to 1 at node i and equal to 0 at any other node.

𝑁ଵ + 𝑁ଶ = 1 −
𝑥ො

𝐿
+

𝑥ො

𝐿
= 1

The interpolation function may be different from the 
actual function except at the endpoints or nodes
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Derivation of Stiffness Matrix

• Step 3 :Define the Strain/Displacement & Stress/Strain Relationships
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𝐿

𝑘
𝑇𝑇 𝟐𝟏

𝟐𝟏 𝑇𝑇

𝐿

The deformation of the spring is:

𝛿 = 𝑢ො 𝐿 − 𝑢ො 0 = 𝑑መଶ௫ − 𝑑መଵ௫

The strain of the spring is:

𝜀 =
𝛿

𝐿
=

𝑢ො 𝐿 − 𝑢ො 0

𝐿
=

𝑑መଶ௫ − 𝑑መଵ௫

𝐿

The relation between force and displacement in the spring is:

𝑇 = 𝑘𝛿 = 𝑘(𝑑መଶ௫ − 𝑑መଵ௫)

Derivation of Stiffness Matrix

• Step 4: Derive the Element Stiffness Matrix and Equations 
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Direct Equilibrium

Minimum Potential 
Energy

Weighted Residual 
Method

𝐿

𝑘
𝑇𝑇 𝟐𝟏

𝑓መଵ௫ 𝑓መଶ௫

𝑇 = −𝑓መଵ௫

𝑇 = +𝑓መଶ௫

𝑇 = 𝑘𝛿 = 𝑘(𝑑መଶ௫ − 𝑑መଵ௫)

−𝑓መଵ௫ = 𝑘(𝑑መଶ௫ − 𝑑መଵ௫)

+𝑓መଶ௫ = 𝑘(𝑑መଶ௫ − 𝑑መଵ௫)

𝑓መଵ௫

𝑓መଶ௫

=
𝑘 −𝑘

−𝑘 𝑘

𝑑መଵ௫

𝑑መଶ௫
Local stiffness matrix for spring element

The matrix is Square, Symmetry and Singular
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• Step 5: Assemble the Element Equations to Obtain the Global 
Equations and Introduce Boundary Conditions 

Derivation of Stiffness Matrix
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𝟑𝟐𝟏 𝐹ଷ௫𝐹ଶ௫

1 2

𝑘ଵ 𝑘ଶ

𝟐𝟏
1

𝟑𝟐

𝑓መଵ௫
(ଵ)

, 𝑑መଵ௫
(ଵ)

𝑓መଶ௫
(ଵ)

, 𝑑መଶ௫
(ଵ)

𝑓መଶ௫
(ଶ)

, 𝑑መଶ௫
(ଶ)

𝑓መଷ௫
(ଶ)

, 𝑑መଷ௫
(ଶ)

2

𝑘ଶ

𝑓መଵ௫
(ଵ)

𝑓መଶ௫
ଵ

=
𝑘ଵ −𝑘ଵ

−𝑘ଵ 𝑘ଵ

𝑑መଵ௫
ଵ

𝑑መଶ௫
ଵ

𝑓መଶ௫
(ଶ)

𝑓መଷ௫
ଶ

=
𝑘ଶ −𝑘ଶ

−𝑘ଶ 𝑘ଶ

𝑑መଶ௫
ଶ

𝑑መଷ௫
ଶ

𝑘ଵ

𝑑ଶ௫

𝑑ଶ௫𝑑ଵ௫

𝑑ଷ௫

Compatibility

Compatibility

Derivation of Stiffness Matrix-Step 5
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𝟐𝟏
1

𝟑𝟐

𝑓መଵ௫
(ଵ)

𝑓መଶ௫
(ଵ) 𝑓መଶ௫

(ଶ)
𝑓መଷ௫

(ଶ)

2

𝑘ଶ

𝑓መଵ௫
(ଵ)

𝑓መଶ௫
ଵ

=
𝑘ଵ −𝑘ଵ

−𝑘ଵ 𝑘ଵ

𝑑ଵ௫

𝑑ଶ௫

𝑓መଶ௫
(ଶ)

𝑓መଷ௫
ଶ

=
𝑘ଶ −𝑘ଶ

−𝑘ଶ 𝑘ଶ

𝑑ଶ௫

𝑑ଷ௫

𝑘ଵ

𝟐

𝑓መଶ௫
(ଵ) 𝑓መଶ௫

(ଶ)

𝟏

𝑓መଵ௫
(ଵ)

𝟑

𝑓መଷ௫
(ଶ)

𝐹ଵ௫ 𝐹ଶ௫ 𝐹ଷ௫

Equilibrium @ node#1

Equilibrium @ node#2

Equilibrium @ node#3

𝑓መଵ௫
(ଵ)

− Fଵ୶ = 0

𝑓መଶ௫
(ଵ)

+ 𝑓መଶ௫
(ଶ)

− Fଶ୶ = 0

𝑓መଷ௫
(ଶ)

− Fଷ୶ = 0

𝐹ଵ௫ = 𝑘ଵ𝑑ଵ௫ − 𝑘ଵ𝑑ଶ௫

𝐹ଶ௫ = −𝑘ଵ𝑑ଵ௫ + 𝑘ଵ𝑑ଶ௫ + 𝑘ଶ𝑑ଶ௫ − 𝑘ଶ𝑑ଷ௫

𝐹ଷ௫ = −𝑘ଶ𝑑ଶ௫ + 𝑘ଶ𝑑ଷ௫
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Derivation of Stiffness Matrix-Step 5
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𝐹ଵ௫

𝐹ଶ௫

𝐹ଷ௫

=

𝑘ଵ −𝑘ଵ 0
−𝑘ଵ 𝑘ଵ + 𝑘ଶ −𝑘ଶ

0 −𝑘ଶ 𝑘ଶ

𝑑ଵ௫

𝑑ଶ௫

𝑑ଷ௫

Global nodal force vector Global nodal displacement vector

𝐾 : Global Stiffness Matrix
(Total Stiffness Matrix)

𝑘ଵ     −𝑘ଵ       0
−𝑘ଵ 𝑘ଵ 0

0 0 0

𝑑ଵ௫       𝑑ଶ௫    𝑑ଷ௫

𝑑ଵ௫

𝑑ଶ௫

𝑑ଷ௫

0           0       0
0   𝑘ଶ −𝑘ଶ

0 −𝑘ଶ 𝑘ଶ

𝑑ଵ௫       𝑑ଶ௫    𝑑ଷ௫

𝑑ଵ௫

𝑑ଶ௫

𝑑ଷ௫

Stiffness matrix for element#1 Stiffness matrix for element#2

𝑘ଵ −𝑘ଵ 0
−𝑘ଵ 𝑘ଵ + 𝑘ଶ −𝑘ଶ

0 −𝑘ଶ 𝑘ଶ

Assembling Stiffness Matrices by Superposition MethodAssembling Stiffness Matrices by Superposition Method

Singular Matrix

Derivation of Stiffness Matrix-Step 5

• Boundary Conditions
• Homogeneous
• Non-homogeneous
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𝟑𝟐𝟏 𝐹ଷ௫𝐹ଶ௫

1 2

𝑘ଵ 𝑘ଶ

𝐹ଵ௫ = 𝑘ଵ(0) − 𝑘ଵ𝑑ଶ௫

𝐹ଶ௫ = −𝑘ଵ(0) + (𝑘ଵ + 𝑘ଶ)𝑑ଶ௫ − 𝑘ଶ𝑑ଷ௫

𝐹ଷ௫ = −𝑘ଶ𝑑ଶ௫ + 𝑘ଶ𝑑ଷ௫

𝑑ଵ௫ = 0

𝐹ଶ௫

𝐹ଷ௫
=

𝑘ଵ + 𝑘ଶ −𝑘ଶ

−𝑘ଶ 𝑘ଶ

𝑑ଶ௫

𝑑ଷ௫
Unknowns

Homogeneous Boundary Conditions:Homogeneous Boundary Conditions:

Not singular 
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Derivation of Stiffness Matrix-Step 5
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𝑑ଵ௫ = 𝛿Non-homogeneous Boundary Conditions:Non-homogeneous Boundary Conditions:

𝟑𝟐𝟏 𝐹ଷ௫𝐹ଶ௫

1 2

𝑘ଵ 𝑘ଶ

𝛿

𝐹ଵ௫ = 𝑘ଵ(𝛿) − 𝑘ଵ𝑑ଶ௫

𝐹ଶ௫ = −𝑘ଵ(𝛿) + (𝑘ଵ + 𝑘ଶ)𝑑ଶ௫ − 𝑘ଶ𝑑ଷ௫

𝐹ଷ௫ = −𝑘ଶ𝑑ଶ௫ + 𝑘ଶ𝑑ଷ௫

𝐹ଶ௫ + 𝑘ଵ𝛿

𝐹ଷ௫ + 0 𝛿
=

𝑘ଵ + 𝑘ଶ −𝑘ଶ

−𝑘ଶ 𝑘ଶ

𝑑ଶ௫

𝑑ଷ௫

UnknownsNot singular 

Derivation of Stiffness Matrix-Step 5

Remove rows & columns 
corresponding to known 

DOFs 

Subtract known DOF 
multiplied by corresponding 

column from the force vector 

Solve for reduced system of 
equations

Using obtained DOFs, solve 
for unknown forces
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𝐹ଵ௫

𝐹ଶ௫

𝐹ଷ௫

=

𝑘ଵ −𝑘ଵ 0
−𝑘ଵ 𝑘ଵ + 𝑘ଶ −𝑘ଶ

0 −𝑘ଶ 𝑘ଶ

𝛿
𝑑ଶ௫

𝑑ଷ௫

𝑘ଵ

−𝑘ଵ

0
−𝛿

𝑘ଵ

−𝑘ଵ

0

+
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Derivation of Stiffness Matrix by 
Minimum Potential Energy

• Step 4: Derive the Element Stiffness Matrix and Equations 
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Direct Equilibrium

Minimum Potential 
Energy

Weighted Residual 
Method

more adaptable to the determination of 
element equations for complicated elements

Only applicable for elastic materials

Total Potential Energy in a system is a function of displacements

𝜋௣ ≡ 𝜋௣ 𝑑ଵ, 𝑑ଶ, … , 𝑑௡

When 𝜋௣ is minimized with respect to these 
displacements, equilibrium equations result.
When 𝜋௣ is minimized with respect to these 
displacements, equilibrium equations result.

Derivation of Stiffness Matrix by 
Minimum Potential Energy

• The principle of minimum potential energy:
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Of all the geometrically possible shapes that a body can assume, the true one, corresponding to 
the satisfaction of stable equilibrium of the body, is identified by a minimum value of the total 

potential energy 

Of all the geometrically possible shapes that a body can assume, the true one, corresponding to 
the satisfaction of stable equilibrium of the body, is identified by a minimum value of the total 

potential energy 

𝜋௣ = 𝑈 + Ω
Internal Strain Energy:

The capacity of internal forces (or stresses) to do 
work through deformations (strains) in the structure 

Potential Energy of External Forces:
The capacity of external forces to do work through 
deformation of the structure. 
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Derivation of Stiffness Matrix by 
Minimum Potential Energy
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𝐹

𝑥

𝑘

𝐹
𝑘

𝑑𝑈 = 𝐹𝑑𝑥

𝐹 = 𝑘𝑥

𝑑𝑈 = 𝑘𝑥𝑑𝑥

𝑈 =
1

2
𝑘𝑥ଶ𝑈 =

1

2
𝑘𝑥ଶ

Ω = −𝐹𝑥Ω = −𝐹𝑥
𝜋௣ =

1

2
𝑘𝑥ଶ − 𝐹𝑥𝜋௣ =

1

2
𝑘𝑥ଶ − 𝐹𝑥

AT stable equilibrium, a minimum 
for Potential energy is met.

At minimum point of potential energy:  𝛿𝜋௣ = 0

𝛿𝜋௣ =
𝜕𝜋௣

𝜕𝑑ଵ
𝛿𝑑ଵ +

𝜕𝜋௣

𝜕𝑑ଶ
𝛿𝑑ଶ + ⋯ +

𝜕𝜋௣

𝜕𝑑௡
𝛿𝑑௡ = 0

Variation of potential energy Variation of displacement at n

At equilibrium, above statement is correct for 
every arbitrary variations of displacement

𝜕𝜋௣

𝜕𝑑௜
= 0,      𝑖 = 1, … , 𝑛

𝜕𝜋௣

𝜕𝑑௜
= 0,      𝑖 = 1, … , 𝑛

Element equations

Derivation of Stiffness Matrix by 
Minimum Potential Energy
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𝐿

𝟏 𝟐
𝑘

𝜋௣ =
1

2
𝑘𝑥ଶ − 𝐹𝑥𝜋௣ =

1

2
𝑘𝑥ଶ − 𝐹𝑥

𝜋௣ =
1

2
𝑘(𝑑መଶ௫ − 𝑑መଵ௫)ଶ−𝑓መଵ௫𝑑መଵ௫ − 𝑓መଶ௫𝑑መଶ௫

𝜕𝜋௣

𝜕𝑑መଵ௫

= −𝑘 𝑑መଶ௫ − 𝑑መଵ௫ − 𝑓መଵ௫ = 0

𝜕𝜋௣

𝜕𝑑መଶ௫

= +𝑘 𝑑መଶ௫ − 𝑑መଵ௫ − 𝑓መଶ௫ = 0

−𝑓መଵ௫ = 𝑘(𝑑መଶ௫ − 𝑑መଵ௫)

+𝑓መଶ௫ = 𝑘(𝑑መଶ௫ − 𝑑መଵ௫)

𝑓መଵ௫

𝑓መଶ௫

=
𝑘 −𝑘

−𝑘 𝑘

𝑑መଵ௫

𝑑መଶ௫
Local stiffness matrix for spring element
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Summary

• All steps to get element formulation was reviewed for spring element 
• Stiffness matrix was calculated for spring element by direct equilibrium method in local 

coordinate.

• Stiffness matrix derived by minimum potential energy approach.

For more information on course visit:
Telegram channel: @FEM_Mahnama
Telegram group: FEM open discussion

Chapter 2: Introduction to Stiffness Method, By Maryam Mahnama, PhD٢١


