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Motivation

• We know that different types of loading, result in internal forces in 
the body.

• We have also explored the effects of body forces and surface forces.
• Can other types of external energies, such as thermal, electrical or 

magnetic energies, be transformed into some forces in the body?
• If so, how can we calculate such forces?
• Here, in this lecture, the effects of thermal energies on internal forces 

(stresses) are to be calculated.
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Formulation of the Thermal Stress 

A free beam under a temperature change of 
Δ𝑇, undergoes an axial elongation:

So, the axial strain is

but the stress in the beam is zero.

For statically-indetermined structures, a temperature 
change will result to stress in body: 
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Formulation of the Thermal Stress 

For the one-dimensional problem, we have, 

In general

The strain energy per unit volume (called strain energy density) is the area under
the (𝜎 − 𝜖) diagram: 
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Formulation of the Thermal Stress 

• Strain energy will be

• Neglecting body force, surface force and nodal forces, potential energy is U, then:
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usual strain energy due to stress 
produced from mechanical loading

Identical terms Constant

𝜕Π

𝜕{𝑑}
= 𝐵 𝐷 𝐵 𝑑𝑉 𝑑 − 𝐵 𝐷 𝜖 𝑑𝑉 = 0

{𝑓 }: force vector due to 
temperature change in the element 

𝑘 : stiffness matrix

Thermal Stress in Bar Element

• We get the formulation as:

Assumptions:
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Thermal Stress in 2D Elements

For the two-dimensional thermal stress problem, 

• Two normal strains, 𝜖 and 𝜖 along with 

• A shear strain 𝛾 due to the change in temperature 
because of the different mechanical properties (such as 
𝐸 ≠ 𝐸 ) in the 𝑥 and 𝑦 directions for the anisotropic 
material 
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For Anisotropic material: For Isotropic material in 
plane stress:
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Example

• In the case of a plane stress CST element, the thermal force vector is
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This force vector  should be added to body force, surface force 
and nodal force vectors.
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Example

• For the bar element fixed at both ends 
under a temperature rise of 50∘F, we 
want to find nodal forces and internal 
stress.
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Example
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Summary

• Plane Strain and Plane Stress Formulations can be used for LST 
Element.

• LST Element was defined and the displacement functions were 
extracted.

• Stiffness matrix for LST element can be derived using numerical 
integration.

Chapter 10: Thermal Stress, By Maryam Mahnama, PhD١١


