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Aims of this lecture

* Derivation of Stiffness matrix for Bar element in local coordinates
* Transformation of vectors in 2D

* Global stiffness matrix for bar element

* Stress Computation in Bar element in 2D
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Introduction to Bar element

y 2%
* An arbitrary oriented Bar in global 2 s
coordinates system: (x,y) f'\ dak
* Introducing a local coordinates system: ]
(56\' y) T 1
* The Bar element has a constant: /)ﬁx x
. W
Cross section area A AnF 2 DOFs
* Young’s modulus E
* LengthL dil Differential Equation for
* From Hooke’s law: o, =Ee, =E— Bar element
* From Equilibrium: dx d di
= = N AE—A =
T = Ao, = constant » dz %
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Stiffness matrix in
local coordinates
system

\{

Step 1: Define Element Type ]

Step 2: Select Displacement Function
Step 3: Strain-Displacement and Stress-Strain Relationships
Step 4: Derive the Element Stiffness Matrix and Equations

Assemble Element Equations to Obtain Global or Total Equations
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Stiffness matrix for Bar element in local

>

. dy —d
d1x+< 2xL 1x>5c\

- = o]
[N]

N (%) Nz (%) {d}

a
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o

coordinates 5
Step 2: Select Displacement Function . ) ca
* An element with 2 DOFs = 2 nodal displacements — L e >
asB.Cs dix fix doxs fox
d ﬁ - aO + alf B.C.S: ﬁ(O) =S dlxr ﬁ(L) = dA2x

Selecting Displacement Functions

1. are commonly polynomials.
2. are continuous within the element (No opening,
overlap or jump)

* The approximate (displacement) functions dlxI :
1

d1x| |
1

3. provide interelement continuity for all degrees of
freedom at each node

@ _ 4@
de - d2x 1

1x

The linear function is then called a conforming,
or compatible, function for the bar element.
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Selecting Displacement Functions

* According to inter-element continuity of elements, we can categorize the
elements.

* The symbol C™ is used to describe the continuity of a piecewise field such as
axial displacement.

C@—’ Degree of derivative that is interelement continuous

—— Stands for continuity

Example: Bahel éumnetivis bas beldmitsrfiehbva isd ey thies
tirspldeeivetintef antion dise Hdsasd ¢ he mmembodndimadary,
l then the field variable is said to be C* continuous.
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l\
@‘ Selecting Displacement Functions

* The approximate (displacement) functions (continued)
[4. allow for rigid-body displacement and for a state of constant strain within ]

Gredw]

the element.
I
]
In the displacement function, lower-order terms cannot be omitted in favor
of the higher-order term Completeness

Completeness of a function is a necessary condition for convergence to the exact answer

 nd

Exact solution No. of elements

Convergence to
exact solution
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Displacement
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Stiffness matrix for Bar element in local .

coordinates

Step 3: Strain-Displacement and Stress-Strain Relationships

* The strain/displacement relationship . _ di _ d[N] (d)
X

* stress/strain relationship
[B]  {d}
o, = Ee,

Ox = E[B]{d}
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Stiffness matrix for Bar element in local .

coordinates

Step 4: Derive the Element Stiffness Matrix and Equations

[ Direct Approach] y
* Minimum Potential Energy
: T 2 7 20
* Galerkin’s Method — 3 —
dlxnflx dzx'fo

‘ Bar element stiffness matrix in local coordinates ‘
{flx} _|AE [ 1 —1] {c?u}
fox L1-1 1 dayx

Chapter 3: Bar Element, By Maryam Mahnama, PhD

T = A, = AE[B]{d} = AE[__ _]{31}
2X

T= _flx = flx— T(‘l'dlx - de) [>

A ” AE A A
T= forx = fox= T(_dlx + de)
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Stiffness matrix for Bar element in local ﬂh
coordinate

Stiffness matrix in

local coordinates Transformation

system

\{

Step 1: Define Element Type |

Step 2: Select Displacement Function)

Step 3: Strain-Displacement and Stress-Strain Relationships]
Step 4: Derive the Element Stiffness Matrix and Equations |

Assemble Element Equations to Obtain Global or Total Equations
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Transformation

* Assumption:
* Global coordinates (x, y) = unit vectors: i, j
* Local coordinates (X, ¥) = unit vectors: i, j

* vector d can be expressed in these coordinates

°d=dxi+dyj» . ————
°d=cixi+&yj d=dyi+d,j=d,i+d,j

What is the relationship between local and global coordinates?
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(dyi+dyj) = i. (dyi + d, ) ANE iW”

ii (d+ dyi.j)

l.i=1X%X1XcosO =cos 8
[
i.j=1x1xcos<5—9)=sin9

» d, = (dycos 8+ d, sin 6)

Ji (dei +dyj) = . (dyl + dyf) | dy, = (—d, sin8 +d, cos 6)

dy = (dyj. )+ dyj.j)

jf=1x1x%cos@ =cosf

jii=1x1xcos (2+9)=—sin0

{gi} N [—CS g‘] {gi}

Transformation (rotation) Matrix

Chapter 3: Bar Element, By Maryam Mahnama, PhD

C =cosH,S =sind

coordinate

Stiffness matrix for Bar element in local §j

Stiffness matrix in

local coordinates
system

\§

Transformation

Step 1: Define Element Type |

Step 2: Select Displacement Function)

Step 3: Strain-Displacement and Stress-Strain Relationships|

Step 4: Derive the Element Stiffness Matrix and Equations|

Assemble Element Equations to Obtain Global or Total Equations
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Stiffness matrix for Bar element in

global coordinate

‘ Bar element stiffness matrix in local coordinates ‘

* We had before: A
{flx} —
f2x

AE _17|(d1s
L [—1 1 11] {Z:x}
[k]

* We now want to relate the global element nodal forces f to the global nodal
y displacements d for an arbitrarily oriented bar element:

PPN

XU X A o
2 P ‘ Bar element stiffness matrix in global coordinates ‘
2
X\ ¢ flx dlx
1 fo d2x
—=L x f2 d;
s y y
\r&&'p Chapter 3: Bar Element, By Maryam Mahnama, PhD

Stiffness matrix for Bar element in
global coordinate

A<O~k

~

* Local coordinates can be expressed as:

T"d

dlx
diy dqiy cos 0+ d;), sin b c S 0 o]y
{de} - {de cos 0 + d,,, sin 9} =[ 0 0 C S]] do, E>
| T*: Transformation matrixl 2y
fix ——
fixl 1€ S 0 01)fiy —— f=kd
U)=l6 o & S Dy e
ny T* is not a square matrix

and cannot be inversed
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Stiffness matrix for Bar element in %
global coordinate
foilx\ diy cos 0+ d;, sin 6 c s 0 ohfdix
diy| | —dixsin€ +dyy,cos 6 -S C 0 o0]|]dy
< o (= dyy cos 0 +d,, sin 6 0 0 C S|)d,
\aZyJ —dyysin 0 + d,, cos 6 | 0 0 -5 C | day
A T: Transformation matrix 5 _
o) e s o o) AE,\; L< _jd
Vil _|=S ¢ 0 of}/y |:>f:Tf f=kd [
fax 8 8 Cs g fax —H 1f)= Krd)
LnyJ f2y
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Stiffness matrix for Bar element in .i

global coordinate

Tf = kTd | ! ff lobal coord |
=~ Bar element stiffness matrix in global coordinates
TITf =T kTd
. — 17
It can be shown that [T] is an orthogonal matrix, - f =[""kTd
while dot product of its rows (columns) are zero. T
It can be shown that in an orthogonal matrix such
as [T], transpose of matrix is equal to its inverse: — 7T1
[T]"=[T]"* LS
C? cS —-C?> -CS
(k] = AEl cs sz —cS —s2
L |-C*> —-cs C* ¢S
—CS —-S* CS S?
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Stiffness matrix in

local coordinates
system

\{

Transformation

Stiffness matrix for Bar element in local
coordinate

Step 1: Define Element Type |

Step 2: Select Displacement Function)

Step 3: Strain-Displacement and Stress-Strain Relationships]

Step 4: Derive the Element Stiffness Matrix and Equations |

Assemble Element Equations to Obtain Global or Total Equations ]

V4
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* Element stiffness matrices and
force vectors should be
transformed into global

coordinates.

* Then they can be assembled.

Chapter 3: Bar Elemen

Assemble Element Equations to Obtain
Global or Total Equations

y 20
S
37\ y
1
0, L
@) P4 *
N . 92

t, By Maryam Mahnama, PhD
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Computation of stress in Bar element

gﬁé

* Local forces result in stress in element flx} _ A_[ 1 -1 {&u}
2X L - 1 d2x
* The usual definition of stress in a bar is fox E c?,
=gt
2x
i Z E C S 0 0 Zix
e — _T_ y
9 S w=pl=1 Ul o ¢ s])a
A d
2y
5 “l.c -5 ¢ sl
// 0’ = —|— i
/rﬁx’ff x o L
‘%«X’p Chapter 3: Bar Element, By Maryam Mahnama, PhD
A
Summary oo

e Bar Element Stiffness Matrix in Local Coordinate

* Concepts of Compatibility, Completeness and Convergence

* Transformation Matrix

* Bar Element Stiffness Matrix in Global Coordinate

* Stress Calculation for Bar Element

Further Readings:

Sections 3-6, 3-7, 3-8 and 3-9 from “A first
course in finite element” by Logan

Chapter 3: Bar Element, By Maryam Mahnama, PhD

AR




'Y

YO/ Y/VFFY

Minimum Potential Energy to Derive Bar ot
Element Equations in Local Coordinates

Step 4: Derive the Element Stiffness Matrix and Equations

* Direct Approach Y
[+ Minimum Potential Energy | 1 ’
* Galerkin’s Method — = —%
dlx flx_ ﬁ i d2xvf2x
_ A [
Ty = l{ +Q 0, (Ay)(Az) I ox(8y)(Az)
Ax
| internal strain energy | At any infinitesimal exl °F 6y +dey
partonbar | Tha internal force The displacement at each
The work done by the ‘ in bar element is point x is:
internal forces during deformation 0, (8y)(AZ) (6, + de)(Ax) — e, (M%)
X X X x

| AU = 0,(Ay)(A2)dex (Ax)

Chapter 3: Bar Element, By Maryam Mahnama, PhD

Minimum Potential Energy to Derive Bar g&
Element Equations in Local Coordinates

=[] [oecar h -

U= [dU=[[f, [oxde,dV T x g,
* Hooke’s law: (for linear elastic material) 0(8y)(82) ﬁ 0. (Ay)(Az)
o, = Ee, » do, = Ede, e M etde

1
*U=[dU=[[f, oxexdV
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Minimum Potential Energy to Derive Bar ot
Element Equations in Local Coordinates

Step 4: Derive the Element Stiffness Matrix and Equations

* Direct Approach
[- Minimum Potential Energy]

e Galerkin’s Method D

T, =U+Q
| |

v v
| Internal Strain Energy | | Work of External Forces

Yo Chapter 3: Bar Element, By Maryam Mahnama, PhD

Minimum Potential Energy to Derive Bar ot
Element Equations in Local Coordinates

External Forces: 1is: Surface Displacement

Nodal Force h% X,: Surface Force

. — > > —p —p —p —p = = D D P =P
Surface (Traction) Force 7. y,dal Force 7 .
BOdy Force d,.: Nodal Displacement — =S

X,: Body Force
1i: Displacement at each point in volume

Q= —% fixdix — || Xstig dS — ||| Xpii dV
i=1
Number of DOFs in Part of the surfa ce of | Volume of the body |
the element element on which X
is exerted
Y# Chapter 3: Bar Element, By Maryam Mahnama, PhD
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Minimum Potential Energy to Derive Bar
Element Equations in Local Coordinates

* The finite element process seeks:

A minimum in the potential energy within the constraint of an
assumed displacement pattern within each element.

An approximate finite element solution found by using the stiffness method will always provide an
approximate value of potential energy greater than or equal to the correct one.

This method also results in a structure behavior that is predicted to be physically stiffer than, or at
best to have the same stiffness as, the actual one.

Why?

In FEM we assume a displacement field for the element.
The assumed field effectively constrains the structure
from deforming in its natural manner. = This constraint
effect stiffens the predicted behavior of the structure.

Yv Chapter 3: Bar Element, By Maryam Mahnama, PhD

Minimum Potential Energy to Derive Bar
Element Equations in Local Coordinates

* Procedure:

1. An expression for the total potential energy.

2. Assume the displacement pattern to be substituted into the expression for total
potential energy.

3. Minimizing the total potential energy with respect to these nodal parameters.

These resulting equations represent the element equations

The resulting equations are the approximate (or possibly exact)
equilibrium equations.

YA Chapter 3: Bar Element, By Maryam Mahnama, PhD
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2
y X,: Surface Force ﬁl

— > b —p b b b —> —> —> —>—> —> —p —> —>

£ e > > >

X,: Body Force

M
1 A s - N
BY . [ ocar-Y tude- [ Rasas- [ raav
14 i=1 S1 %
4 L
Ty = EJ O'xexdf - flx(ilx —fAZdiZx - Jf )?sﬁs ds — fff Xbﬁ av
0

T v TORURP™ S B s 1 ...... 1 .....
@ u= [N]{d} .................. [N ]{d} {ex} —.[Bf{d} """" » [B] = 1 Z]
2 % "'s'i{éiﬁé'f'iiﬁé'{lé}}'}}}éi}&"é {04} —__[B_]_:{Ex}
[N] = [1 -7 Z] jevaluatedoverthe i T3
surface that the In 1-D: [D]
. d d|str|buted surface
{d} = {Alx} ! traction acts :
¥ dax T Chapter 3: Bar Element, By Maryam Mahnama, PhD

f (o {edaz — (d)] {f”} ff (A7 (R} dS — ff (@7 (%, }dv

np=§ f (1m)(@)) e d)az - (@) () - ff (@} "ot as = [ (@) hyav

n,,=§ Of {&}T[B]T[D]T[B]{&}dx {gi} ff {d} AT (X} dS — W {d} [N]T{X,}dV

T

=5 [@" BT BHd)as - (@) ) = %{a} (31" DI [8){a) - ()" (P}
constant
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V¢

..................................................................................................
. LN

Definitions {f:} = ff [Ns]7{Xs}ds Surface (Traction) Force
s

{fb} = jff [N]T{)?b}dV Body Force

0
....................................................................................................

* Potential energy is composed of two parts: internal strain energy and work of
external forces

* Internal strain energy takes the effect of stress and strains in the matter

* External forces contain nodal forces, surface forces and body forces.

* The value of P.E. computed by FEM is greater than or equal to reality.

* The stiffness matrix obtained by minimum P.E. approach is the same as the one
obtained by direct method.

Further Readings:
Sections 3-10 and its example from “A first
course in finite element” by Logan

Y Chapter 3: Bar Element, By Maryam Mahnama, PhD

on 1 5
P — AL . L 1 1(dix) 5 4 q(Pix
0dy » el dli §rEl il &)
oy, I
= =0 AEL 42 A A 42 N R
ade =Ty = 212 (dlx — 2dy,dyy + de) — dyx Py — dpx Py
‘ Bar element stiffness matrix in local coordinates ‘
T A Gy —dyy) — Py = 0 ]
od,, L T T T |:> {Plx} _|AE [ 1 —1] {dlx}
on AE , . R = %
adp =T(_dlx'|'de)_PZx=0 sz L 1-1 1 de
2x
[k]
AR Chapter 3: Bar Element, By Maryam Mahnama, PhD
nﬁh
Summary \Y./
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Galerkin’s Residual Method to Derive Bar
Element Equations in Local Coordinates

Step 4: Derive the Element Stiffness Matrix and Equations

* Direct Approach Y
* Minimum Potential Energy
- _ra 2 7 %0
|+ Galerkin’s Method | pa— - —>
lxnflx dzx'fo

Weighted Residual Methods

Very good for the situations when we have only the differential
equation and boundary conditions available

Chapter 3: Bar Element, By Maryam Mahnama, PhD

Weighted Residual Methods

* The methods of weighted residuals applied directly to the differential equation
can be used to develop the finite element equations.

* There are a number of other residual methods:
* collocation,
* |least squares,
¢ subdomain

Differential Equation on a
“field function”

Example:

ofui du: _
ODE: ﬁ+xax6—f(x) =0
B.C.s:u(a) = a',i(b) =b'
Tial Function: ¢

*¢ ¢
ﬁi‘Xa—f(x)iO

2
¢, %

_f(x) = Residual =R: ReSiduaI

x2 0x

Y¥ Chapter 3: Bar Element, By Maryam Mahnama, PhD
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Weighted Residual Methods

* We want to have a trial function with the minimum value over the whole region

of the element:
fff R dV = minimum
\%

* In Weighted Residual methods, we require that a weighted value of residual be
zero over the whole element:

!” RW AV =0
Weighting Function

\Y

* |n Galerkin’s method:

W=Shape Functions of the Element

Chapter 3: Bar Element, By Maryam Mahnama, PhD

ol

‘ Integration by part ‘

ff RN;dV =0, %(i=12,..1) |:> A system of n equations
V.,

.
l‘-'
:

Applies to points within the region of a body
without reference to boundary conditions such
as specified applied loads or displacements.

.......................... » Integrals applicable for the region and its boundary

Chapter 3: Bar Element, By Maryam Mahnama, PhD
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Galerkin’s Residual Method to Derive Bar
Element Equations in Local Coordinates

Step 4: Derive the Element Stiffness Matrix and Equations

* Direct Approach Y
* Minimum Potential Energy
: T 2 7 %0
[° Galerkin’s Method] p— 3 —_—
&lxnflx (zzx'fo

We had the differential equation for bar element as

d AEda .
dz dz |

Boundary effects:
AE€x(0) = fix
AEex(L) = fox

Chapter 3: Bar Element, By Maryam Mahnama, PhD

Galerkin’s Residual Method to Derive Bar 5!
Element Equations in Local Coordinates |

* We want to derive the equations of FEM for this ODE

* Trial function ¢ = displacement function obtained at step 2

d do Integration by parts is given in general by : | Boundary Effects
X X fudv=uv—IVdu AEE(0)=f1x
dif " dg\iems dé .
— — iN:ldx = | = A= ) =
f df,(AE q@_):&dx 0,i=12 ax = fon

____________

VoL
i d¢ dN;

| = Tt gz
E J-AE % dr dx

............

Boundary Effects

Chapter 3: Bar Element, By Maryam Mahnama, PhD
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Galerkin’s Residual Method to Derive Bar
Element Equations in Local Coordinates

i=1 L [ G 77T S
fi(AE d¢> N, dz —:<AE ddf (L)>=N1(L) —-<AE@(0)>:N1(0) AE@dAil £=0
dx dx dx 1 dx 1 dx dx
o Sy ey
E=2 fa o ap "'"&f’"‘ '""f?fm‘ i dg N
o bf o de i 429 o) _ dgdN, i
i G ) A ) A
‘fo 1 vflx 0

Boundary Effects

d A . AE s b3
AE%(O) = fix OJ-[ ~fix _T[l -1]=0 dI::f d> {flx} AE [ 1 —1] {alx}
. AE ~ = — S
AEZ_;I:(L) = fox fax _T[_l =0 fou fij _ T L5

i ‘ Bar element stiffness matrix in local coordinates ‘
dN, . [ [dN, d-N—a AN N

é LL*® —
Ld
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Summary

Weighted Residual Methods are good means to solve differential equations numerically
The basis is to employ a trial function as the solution, which satisfies B.C.s
The residual is obtained by substituting trial function into D.E.

We try to get the residual times a weighting function equal to zero over whole volume of
the element.

In Galerkin’s method, the weighting function is the same as shape function.

Integration by part is an important stage in Galerkin’s method to introduce B.C.s.

Further Readings:
Sections 3-12 from “A first course in finite element”
by Logan
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Comparison of FE Solution to exact
Solution of Bar Element

- — — — «—| P(x)
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