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Motivation

Numerical Integration in space helped us to get [K].

In dynamic analysis, displacement changes within
time.

Integration from nodal acceleration gives the
evolution of displacement.

Time integration of acceleration is demanded
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Direct Integration Methods
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Explicit Methods:
Central Difference Method
. dijpq —di
* Based on finite difference expressions in time di zl(At) . @
subscript: number of step with time increment of At dooe —d -r:l:
d; = d(t) > diyq = d(t + Ab) d; = L+21(At)l_1 ;5:’
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Explicit Methods:
Central Difference Method

* Based on finite difference expressions in time
Having initial position and velocity, positions

and velocities at every time increments can
be obtained.
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Explicit Methods:
Central Difference Method

{do}.{do} & {F;}are known
{do} = [M]™*({Fo} - [K1{d,})

(ar)?

- {do}

{d_1} ={do} — (At){do} =

{d,} = [MIT'[(AD)*{Fo} + 2[M] = (AD)?[K]){do} — [M]{d_,}]

{d,} = IMI"H[(AD)2(F,} + 2[M] — (A2 [KD{d,} — [M1{do}
{d,} = M"Y ((F,} - [K){d,})
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Implicit Methods:
Newmark’s (Newmark-Beta) Method

0<p<g {diss} = {di} + @OIA = i} + 7 {dir)]
Best imation fi 1
— y=3 {(disa) = {d} + @O{di} + (@0)? (—— ){d }+ Bldian)]
0.1 of 1/frequency of the
desired phenomenon. g = (1) {di+1} _ {di} 4 (At)[{&i} + {di+1}]/2
V=5 {dis1} = {di} + @DO{di} + (A0)?/2{d;}

Central Difference Method
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Displacement and velocities do not become unbounded regardless of the time step chosen.
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Implicit Methods:
Newmark’s (Newmark-Beta) Method

{do}.{do} & {F;}are known J
{do} = MI1({(Fo} — [K1{do}) | {d1} = MI"2({F;} - [K]{dy})
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Implicit Methods:
Wilson’s (Wilson-Theta) Method

e An extension of the linear acceleration method

* The acceleration is assumed to vary linearly within each time interval
fromt to t + OAt, where® > 1

* For ® = 1, the method reduces to linear acceleration method.
* According to references, ® = 1.37 yields unconditional stability.
* In practice ® = 1.4 is often selected.
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Implicit Methods:
Wilson’s (Wilson—Theta) Method

{dis} ={di} + {d } {dis1)]

{dir1} = {d;} + (040){d; } GO (Z[d }+ {diva])

{di1} = ({dis1} = {d})_GAt{d} 2{d;}
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—— {di}
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{do}.{do} & {F;}are known

{‘10} =
[M]{d;} = [M]{do} + (6At)[M {do} +
([M] Sz

6[M]
(0A1)?

Implicit Methods:
Wilson’s (Wilson-Theta) Method

[M]~*({Fo} — [K]{do}) {1} [M]~*({F,} - [K]{dl})
)
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(0At)? t)z
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Comparison of Implicit & Explicit
Methods

to reach convergence
\ )

iCi ‘ Implicit
| plici
Solution at t + At is Solution at t + At is
obtained by quantities — obtained by quantities at
att t+ At
N
Equilibrium eq.s are not || Equilibrium eq.s are
satisfied precisely satisfied precisely
Shorter time Th lution i
increments are needed L € solution 15

unconditionally stable
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Summary

* In dynamic problems, we need to perform the discretization in both
space and time

* Time discretization is used by two main approaches: Implicit and
Explicit

* Central Difference method is a sample of Explicit methods.

* Newmak’s method and Wilson’s method are two examples of implicit
schemes.

* Explicit methods are better to be employed in short simulations,
while implicit methods are more precise and need more time.
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